Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness of Bi-parameter Littlewood-Paley operators on product Hardy space (1605.00476v1)

Published 2 May 2016 in math.CA

Abstract: Let $n_1,n_2\ge 1, \lambda_1>1$ and $\lambda_2>1$. For any $x=(x_1,x_2) \in \mathbb {R}n\times\mathbb{R}m$, let $g$ and $g_{\vec{\lambda}}*$ be the bi-parameter Littlewood-Paley square functions defined by \begin{align*} g(f)(x)= \Big(\int_0{\infty}\int_0{\infty}|\theta_{t_1,t_2} f(x_1,x_2)|2 \frac{dt_1}{t_1} \frac{dt_2}{t_2} \Big){1/2}, \hbox{and} \end{align*} $$ g_{\vec{\lambda}}*(f)(x) = \Big(\iint_{\mathbb{R}{m+1}_{+}} \iint_{\mathbb{R}{n+1}_{+}} \prod_{i=1}2\Big(\frac{t_1}{t_i + |x_i - y_i|}\Big){n_i \lambda_i} |\theta_{t_1,t_2} f(y_1,y_2)|2 \frac{dy_1 dt_1}{t_1{n+1}} \frac{dy_2 dt_2}{t_2{m+1}} \Big){1/2}, $$ \noindent where $\theta_{t_1,t_2} f(x_1, x_2) = \iint_{\mathbb{R}n\times\mathbb{R}m} s_{t_1,t_2}(x_1,x_2,y_1,y_2)f(y_1,y_2) dy_1dy_2$. It is known that the $L2$ boundedness of bi-parameter $g$ and $g_{\vec{\lambda}}*$ have been established recently by Martikainen, and Cao, Xue, respectively. In this paper, under certain structure conditions assumed on the kernel $s_{t_1,t_2},$ we show that both $g$ and $g_{\vec{\lambda}}*$ are bounded from product Hardy space $H1(\mathbb{R}n\times\mathbb{R}m)$ to $L1(\mathbb{R}n\times\mathbb{R}m)$. As consequences, the $Lp$ boundedness of $g$ and $g_{\vec{\lambda}}*$ will be obtained for $1<p<2$.

Summary

We haven't generated a summary for this paper yet.