Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Enhanced Harmony Search Method for Bangla Handwritten Character Recognition Using Region Sampling (1605.00420v1)

Published 2 May 2016 in cs.CV

Abstract: Identification of minimum number of local regions of a handwritten character image, containing well-defined discriminating features which are sufficient for a minimal but complete description of the character is a challenging task. A new region selection technique based on the idea of an enhanced Harmony Search methodology has been proposed here. The powerful framework of Harmony Search has been utilized to search the region space and detect only the most informative regions for correctly recognizing the handwritten character. The proposed method has been tested on handwritten samples of Bangla Basic, Compound and mixed (Basic and Compound characters) characters separately with SVM based classifier using a longest run based feature-set obtained from the image subregions formed by a CG based quad-tree partitioning approach. Applying this methodology on the above mentioned three types of datasets, respectively 43.75%, 12.5% and 37.5% gains have been achieved in terms of region reduction and 2.3%, 0.6% and 1.2% gains have been achieved in terms of recognition accuracy. The results show a sizeable reduction in the minimal number of descriptive regions as well a significant increase in recognition accuracy for all the datasets using the proposed technique. Thus the time and cost related to feature extraction is decreased without dampening the corresponding recognition accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ritesh Sarkhel (11 papers)
  2. Amit K Saha (1 paper)
  3. Nibaran Das (44 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.