Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Supervised Learning Algorithm for Binary Domain Classification of Web Queries using SERPs (1605.00184v2)

Published 30 Apr 2016 in cs.IR

Abstract: General purpose Search Engines (SEs) crawl all domains (e.g., Sports, News, Entertainment) of the Web, but sometimes the informational need of a query is restricted to a particular domain (e.g., Medical). We leverage the work of SEs as part of our effort to route domain specific queries to local Digital Libraries (DLs). SEs are often used even if they are not the "best" source for certain types of queries. Rather than tell users to "use this DL for this kind of query", we intend to automatically detect when a query could be better served by a local DL (such as a private, access-controlled DL that is not crawlable via SEs). This is not an easy task because Web queries are short, ambiguous, and there is lack of quality labeled training data (or it is expensive to create). To detect queries that should be routed to local, specialized DLs, we first send the queries to Google and then examine the features in the resulting Search Engine Result Pages (SERPs), and then classify the query as belonging to either the scholar or non-scholar domain. Using 400,000 AOL queries for the non-scholar domain and 400,000 queries from the NASA Technical Report Server (NTRS) for the scholar domain, our classifier achieved a precision of 0.809 and F-measure of 0.805.

Citations (3)

Summary

We haven't generated a summary for this paper yet.