Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric Bayesian Negative Binomial Factor Analysis

Published 25 Apr 2016 in stat.ME and stat.ML | (1604.07464v2)

Abstract: A common approach to analyze a covariate-sample count matrix, an element of which represents how many times a covariate appears in a sample, is to factorize it under the Poisson likelihood. We show its limitation in capturing the tendency for a covariate present in a sample to both repeat itself and excite related ones. To address this limitation, we construct negative binomial factor analysis (NBFA) to factorize the matrix under the negative binomial likelihood, and relate it to a Dirichlet-multinomial distribution based mixed-membership model. To support countably infinite factors, we propose the hierarchical gamma-negative binomial process. By exploiting newly proved connections between discrete distributions, we construct two blocked and a collapsed Gibbs sampler that all adaptively truncate their number of factors, and demonstrate that the blocked Gibbs sampler developed under a compound Poisson representation converges fast and has low computational complexity. Example results show that NBFA has a distinct mechanism in adjusting its number of inferred factors according to the sample lengths, and provides clear advantages in parsimonious representation, predictive power, and computational complexity over previously proposed discrete latent variable models, which either completely ignore burstiness, or model only the burstiness of the covariates but not that of the factors.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.