Papers
Topics
Authors
Recent
Search
2000 character limit reached

About the Structure of the Integer Cone and its Application to Bin Packing

Published 25 Apr 2016 in cs.DS, cs.CG, and cs.DM | (1604.07286v2)

Abstract: We consider the bin packing problem with $d$ different item sizes and revisit the structure theorem given by Goemans and Rothvo\ss [6] about solutions of the integer cone. We present new techniques on how solutions can be modified and give a new structure theorem that relies on the set of vertices of the underlying integer polytope. As a result of our new structure theorem, we obtain an algorithm for the bin packing problem with running time $|V|{2{O(d)}} \cdot enc(I){O(1)}$, where $V$ is the set of vertices of the integer knapsack polytope and $enc(I)$ is the encoding length of the bin packing instance. The algorithm is fixed parameter tractable, parameterized by the number of vertices of the integer knapsack polytope $|V|$. This shows that the bin packing problem can be solved efficiently when the underlying integer knapsack polytope has an easy structure, i.e. has a small number of vertices. Furthermore, we show that the presented bounds of the structure theorem are asymptotically tight. We give a construction of bin packing instances using new structural insights and classical number theoretical theorems which yield the desired lower bound.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.