Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A graphical interface for the Gromov--Witten theory of curves (1604.07250v2)

Published 25 Apr 2016 in math.AG

Abstract: We explore the explicit relationship between the descendant Gromov--Witten theory of target curves, operators on Fock spaces, and tropical curve counting. We prove a classical/tropical correspondence theorem for descendant invariants and give an algorithm that establishes a tropical Gromov--Witten/Hurwitz equivalence. Tropical curve counting is related to an algebra of operators on the Fock space by means of bosonification. In this manner, tropical geometry provides a convenient "graphical user interface" for Okounkov and Pandharipande's celebrated GW/H correspondence. An important goal of this paper is to spell out the connections between these various perspectives for target dimension 1, as a first step in studying the analogous relationship between logarithmic descendant theory, tropical curve counting, and Fock space formalisms in higher dimensions.

Summary

We haven't generated a summary for this paper yet.