Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Key courses of academic curriculum uncovered by data mining of students' grades (1604.07074v1)

Published 24 Apr 2016 in physics.ed-ph and physics.soc-ph

Abstract: Learning is a complex cognitive process that depends not only on an individual capability of knowledge absorption but it can be also influenced by various group interactions and by the structure of an academic curriculum. We have applied methods of statistical analyses and data mining (Principal Component Analysis and Maximal Spanning Tree) for anonymized students' scores at Faculty of Physics, Warsaw University of Technology. A slight negative linear correlation exists between mean and variance of course grades, i.e. courses with higher mean scores tend to possess a lower scores variance. There are courses playing a central role, e.g. their scores are highly correlated to other scores and they are in the centre of corresponding Maximal Spanning Trees. Other courses contribute significantly to students' score variance as well to the first principal component and they are responsible for differentiation of students' scores. Correlations of the first principal component to courses' mean scores and scores variance suggest that this component can be used for assigning ECTS points to a given course. The analyse is independent from declared curricula of considered courses. The proposed methodology is universal and can be applied for analysis of student's scores and academic curriculum at any faculty.

Summary

We haven't generated a summary for this paper yet.