Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stratonovich-Skorohod integral formula for Gaussian rough paths (1604.06846v3)

Published 23 Apr 2016 in math.PR

Abstract: Given a Gaussian process $X$, its canonical geometric rough path lift $\mathbf{X}$, and a solution $Y$ to the rough differential equation (RDE) $\mathrm{d}Y_{t} = V\left (Y_{t}\right ) \circ \mathrm{d} \mathbf{X}_t$, we present a closed-form correction formula for $\int Y \circ \mathrm{d} \mathbf{X} - \int Y \, \mathrm{d} X$, i.e. the difference between the rough and Skorohod integrals of $Y$ with respect to $X$. When $X$ is standard Brownian motion, we recover the classical Stratonovich-to-It{^o} conversion formula, which we generalize to Gaussian rough paths with finite $p$-variation, $p < 3$, and satisfying an additional natural condition. This encompasses many familiar examples, including fractional Brownian motion with $H > \frac{1}{3}$. To prove the formula, we first show that the Riemann-sum approximants of the Skorohod integral converge in $L2(\Omega)$ by using a novel characterization of the Cameron-Martin norm in terms of higher-dimensional Young-Stieltjes integrals. Next, we append the approximants of the Skorohod integral with a suitable compensation term without altering the limit, and the formula is finally obtained after a re-balancing of terms.

Summary

We haven't generated a summary for this paper yet.