Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A unified framework for harmonic analysis of functions on directed graphs and changing data (1604.06835v2)

Published 22 Apr 2016 in math.CA

Abstract: We present a general framework for studying harmonic analysis of functions in the settings of various emerging problems in the theory of diffusion geometry. The starting point of the now classical diffusion geometry approach is the construction of a kernel whose discretization leads to an undirected graph structure on an unstructured data set. We study the question of constructing such kernels for directed graph structures, and argue that our construction is essentially the only way to do so using discretizations of kernels. We then use our previous theory to develop harmonic analysis based on the singular value decomposition of the resulting non-self-adjoint operators associated with the directed graph. Next, we consider the question of how functions defined on one space evolves to another space in the paradigm of changing data sets recently introduced by Coifman and Hirn. While the approach of Coifman and Hirn require that the points on one space should be in a known one-to-one correspondence with the points on the other, our approach allows the identification of only a subset of landmark points. We introduce a new definition of distance between points on two spaces, construct localized kernels based on the two spaces and certain interaction parameters, and study the evolution of smoothness of a function on one space to its lifting to the other space via the landmarks. We develop novel mathematical tools that enable us to study these seemingly different problems in a unified manner.

Citations (29)

Summary

We haven't generated a summary for this paper yet.