Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Tree-Structured Ising Model in Order to Make Predictions (1604.06749v3)

Published 22 Apr 2016 in math.ST, cs.IT, math.IT, math.PR, stat.ML, and stat.TH

Abstract: We study the problem of learning a tree Ising model from samples such that subsequent predictions made using the model are accurate. The prediction task considered in this paper is that of predicting the values of a subset of variables given values of some other subset of variables. Virtually all previous work on graphical model learning has focused on recovering the true underlying graph. We define a distance ("small set TV" or ssTV) between distributions $P$ and $Q$ by taking the maximum, over all subsets $\mathcal{S}$ of a given size, of the total variation between the marginals of $P$ and $Q$ on $\mathcal{S}$; this distance captures the accuracy of the prediction task of interest. We derive non-asymptotic bounds on the number of samples needed to get a distribution (from the same class) with small ssTV relative to the one generating the samples. One of the main messages of this paper is that far fewer samples are needed than for recovering the underlying tree, which means that accurate predictions are possible using the wrong tree.

Citations (46)

Summary

We haven't generated a summary for this paper yet.