Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Classifier-guided Approach for Top-down Salient Object Detection (1604.06570v1)

Published 22 Apr 2016 in cs.CV

Abstract: We propose a framework for top-down salient object detection that incorporates a tightly coupled image classification module. The classifier is trained on novel category-aware sparse codes computed on object dictionaries used for saliency modeling. A misclassification indicates that the corresponding saliency model is inaccurate. Hence, the classifier selects images for which the saliency models need to be updated. The category-aware sparse coding produces better image classification accuracy as compared to conventional sparse coding with a reduced computational complexity. A saliency-weighted max-pooling is proposed to improve image classification, which is further used to refine the saliency maps. Experimental results on Graz-02 and PASCAL VOC-07 datasets demonstrate the effectiveness of salient object detection. Although the role of the classifier is to support salient object detection, we evaluate its performance in image classification and also illustrate the utility of thresholded saliency maps for image segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hisham Cholakkal (78 papers)
  2. Jubin Johnson (5 papers)
  3. Deepu Rajan (14 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.