Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mode jumping MCMC for Bayesian variable selection in GLMM

Published 21 Apr 2016 in stat.CO | (1604.06398v4)

Abstract: Generalized linear mixed models (GLMM) are used for inference and prediction in a wide range of different applications providing a powerful scientific tool. An increasing number of sources of data are becoming available, introducing a variety of candidate explanatory variables for these models. Selection of an optimal combination of variables is thus becoming crucial. In a Bayesian setting, the posterior distribution of the models, based on the observed data, can be viewed as a relevant measure for the model evidence. The number of possible models increases exponentially in the number of candidate variables. Moreover, the space of models has numerous local extrema in terms of posterior model probabilities. To resolve these issues a novel MCMC algorithm for the search through the model space via efficient mode jumping for GLMMs is introduced. The algorithm is based on that marginal likelihoods can be efficiently calculated within each model. It is recommended that either exact expressions or precise approximations of marginal likelihoods are applied. The suggested algorithm is applied to simulated data, the famous U.S. crime data, protein activity data and epigenetic data and is compared to several existing approaches.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.