Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Unknown Service Rates in Queues: A Multi-Armed Bandit Approach (1604.06377v4)

Published 21 Apr 2016 in cs.SY

Abstract: Consider a queueing system consisting of multiple servers. Jobs arrive over time and enter a queue for service; the goal is to minimize the size of this queue. At each opportunity for service, at most one server can be chosen, and at most one job can be served. Service is successful with a probability (the service probability) that is a priori unknown for each server. An algorithm that knows the service probabilities (the "genie") can always choose the server of highest service probability. We study algorithms that learn the unknown service probabilities. Our goal is to minimize queue-regret: the (expected) difference between the queue-lengths obtained by the algorithm, and those obtained by the "genie." Since queue-regret cannot be larger than classical regret, results for the standard multi-armed bandit problem give algorithms for which queue-regret increases no more than logarithmically in time. Our paper shows surprisingly more complex behavior. In particular, as long as the bandit algorithm's queues have relatively long regenerative cycles, queue-regret is similar to cumulative regret, and scales (essentially) logarithmically. However, we show that this "early stage" of the queueing bandit eventually gives way to a "late stage", where the optimal queue-regret scaling is $O(1/t)$. We demonstrate an algorithm that (order-wise) achieves this asymptotic queue-regret in the late stage. Our results are developed in a more general model that allows for multiple job classes as well.

Citations (46)

Summary

We haven't generated a summary for this paper yet.