Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commutative Stochastic Games (1604.06329v1)

Published 21 Apr 2016 in math.OC

Abstract: We are interested in the convergence of the value of n-stage games as n goes to infinity and the existence of the uniform value in stochastic games with a general set of states and finite sets of actions where the transition is commutative. This means that playing an action profile a 1 followed by an action profile a 2 , leads to the same distribution on states as playing first the action profile a 2 and then a 1. For example, absorbing games can be reformulated as commutative stochastic games. When there is only one player and the transition function is deterministic, we show that the existence of a uniform value in pure strategies implies the existence of 0-optimal strategies. In the framework of two-player stochastic games, we study a class of games where the set of states is R m and the transition is deterministic and 1-Lipschitz for the L 1-norm, and prove that these games have a uniform value. A similar proof shows the existence of an equilibrium in the non zero-sum case. These results remain true if one considers a general model of finite repeated games, where the transition is commutative and the players observe the past actions but not the state.

Summary

We haven't generated a summary for this paper yet.