Embedded all relevant feature selection with Random Ferns (1604.06133v1)
Abstract: Many machine learning methods can produce variable importance scores expressing the usability of each feature in context of the produced model; those scores on their own are yet not sufficient to generate feature selection, especially when an all relevant selection is required. Although there are wrapper methods aiming to solve this problem, they introduce a substantial increase in the required computational effort. In this paper I investigate an idea of incorporating all relevant selection within the training process by producing importance for implicitly generated shadows, attributes irrelevant by design. I propose and evaluate such a method in context of random ferns classifier. Experiment results confirm the effectiveness of such approach, although show that fully stochastic nature of random ferns limits its applicability either to small dimensions or as a part of a broader feature selection procedure.
- Miron Bartosz Kursa (2 papers)