2000 character limit reached
Constructing error-correcting binary codes using transitive permutation groups (1604.06022v3)
Published 20 Apr 2016 in cs.IT, math.CO, and math.IT
Abstract: Let $A_2(n,d)$ be the maximum size of a binary code of length $n$ and minimum distance $d$. In this paper we present the following new lower bounds: $A_2(18,4) \ge 5632$, $A_2(21,4) \ge 40960$, $A_2(22,4) \ge 81920$, $A_2(23,4) \ge 163840$, $A_2(24,4) \ge 327680$, $A_2(24,10) \ge 136$, and $A_2(25,6) \ge 17920$. The new lower bounds are a result of a systematic computer search over transitive permutation groups.