Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circular Free Spectrahedra (1604.05756v1)

Published 19 Apr 2016 in math.OA

Abstract: This paper considers matrix convex sets invariant under several types of rotations. It is known that matrix convex sets that are free semialgebraic are solution sets of Linear Matrix Inequalities (LMIs); they are called free spectrahedra. We classify all free spectrahedra that are circular, that is, closed under multiplication by exp(i t): up to unitary equivalence, the coefficients of a minimal LMI defining a circular free spectrahedron have a common block decomposition in which the only nonzero blocks are on the superdiagonal. A matrix convex set is called free circular if it is closed under left multiplication by unitary matrices. As a consequence of a Hahn-Banach separation theorem for free circular matrix convex sets, we show the coefficients of a minimal LMI defining a free circular free spectrahedron have, up to unitary equivalence, a block decomposition as above with only two blocks. This paper also gives a classification of those noncommutative polynomials invariant under conjugating each coordinate by a different unitary matrix. Up to unitary equivalence such a polynomial must be a direct sum of univariate polynomials.

Summary

We haven't generated a summary for this paper yet.