Polynomial splitting measures and cohomology of the pure braid group (1604.05359v3)
Abstract: We study for each $n$ a one-parameter family of complex-valued measures on the symmetric group $S_n$, which interpolate the probability of a monic, degree $n$, square-free polynomial in $\mathbb{F}_q[x]$ having a given factorization type. For a fixed factorization type, indexed by a partition $\lambda$ of $n$, the measure is known to be a Laurent polynomial. We express the coefficients of this polynomial in terms of characters associated to $S_n$-subrepresentations of the cohomology of the pure braid group $H{\bullet}(P_n, \mathbb{Q})$. We deduce that the splitting measures for all parameter values $z= -\frac{1}{m}$ (resp. $z= \frac{1}{m}$), after rescaling, are characters of $S_n$-representations (resp. virtual $S_n$-representations.)