Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Boosting with SVM as Week Learners Help? (1604.05242v2)

Published 18 Apr 2016 in cs.CV and cs.LG

Abstract: Object recognition in images involves identifying objects with partial occlusions, viewpoint changes, varying illumination, cluttered backgrounds. Recent work in object recognition uses machine learning techniques SVM-KNN, Local Ensemble Kernel Learning, Multiple Kernel Learning. In this paper, we want to utilize SVM as week learners in AdaBoost. Experiments are done with classifiers like near- est neighbor, k-nearest neighbor, Support vector machines, Local learning(SVM- KNN) and AdaBoost. Models use Scale-Invariant descriptors and Pyramid his- togram of gradient descriptors. AdaBoost is trained with set of week classifier as SVMs, each with kernel distance function on different descriptors. Results shows AdaBoost with SVM outperform other methods for Object Categorization dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.