Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annotation Order Matters: Recurrent Image Annotator for Arbitrary Length Image Tagging (1604.05225v3)

Published 18 Apr 2016 in cs.CV and cs.AI

Abstract: Automatic image annotation has been an important research topic in facilitating large scale image management and retrieval. Existing methods focus on learning image-tag correlation or correlation between tags to improve annotation accuracy. However, most of these methods evaluate their performance using top-k retrieval performance, where k is fixed. Although such setting gives convenience for comparing different methods, it is not the natural way that humans annotate images. The number of annotated tags should depend on image contents. Inspired by the recent progress in machine translation and image captioning, we propose a novel Recurrent Image Annotator (RIA) model that forms image annotation task as a sequence generation problem so that RIA can natively predict the proper length of tags according to image contents. We evaluate the proposed model on various image annotation datasets. In addition to comparing our model with existing methods using the conventional top-k evaluation measures, we also provide our model as a high quality baseline for the arbitrary length image tagging task. Moreover, the results of our experiments show that the order of tags in training phase has a great impact on the final annotation performance.

Citations (69)

Summary

We haven't generated a summary for this paper yet.