Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Knowledge on Election Time in Anonymous Networks (1604.05023v1)

Published 18 Apr 2016 in cs.DS

Abstract: Leader election is one of the basic problems in distributed computing. For anonymous networks, the task of leader election is formulated as follows: every node v of the network must output a simple path, which is coded as a sequence of port numbers, such that all these paths end at a common node, the leader. In this paper, we study deterministic leader election in arbitrary anonymous networks. It is well known that leader election is impossible in some networks, regardless of the allocated amount of time, even if nodes know the map of the network. However, even in networks in which it is possible to elect a leader knowing the map, the task may be still impossible without any knowledge, regardless of the allocated time. On the other hand, for any network in which leader election is possible knowing the map, there is a minimum time, called the election index, in which this can be done. Informally, the election index of a network is the minimum depth at which views of all nodes are distinct. Our aim is to establish tradeoffs between the allocated time $\tau$ and the amount of information that has to be given a priori to the nodes to enable leader election in time $\tau$ in all networks for which leader election in this time is at all possible. Following the framework of algorithms with advice, this information is provided to all nodes at the start by an oracle knowing the entire network. The length of this string (its number of bits) is called the size of advice. For a given time $\tau$ allocated to leader election, we give upper and lower bounds on the minimum size of advice sufficient to perform leader election in time $\tau$. We focus on the two sides of the time spectrum and give tight (or almost tight) bounds on the minimum size of advice for these extremes. We also show that constant advice is not sufficient for leader election in all graphs, regardless of the allocated time.

Citations (10)

Summary

We haven't generated a summary for this paper yet.