Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Receiver Architecture Combining BP, MF, and EP for Multi-Signal Detection (1604.04834v1)

Published 17 Apr 2016 in cs.IT, math.IT, and stat.ML

Abstract: Receiver algorithms which combine belief propagation (BP) with the mean field (MF) approximation are well-suited for inference of both continuous and discrete random variables. In wireless scenarios involving detection of multiple signals, the standard construction of the combined BP-MF framework includes the equalization or multi-user detection functions within the MF subgraph. In this paper, we show that the MF approximation is not particularly effective for multi-signal detection. We develop a new factor graph construction for application of the BP-MF framework to problems involving the detection of multiple signals. We then develop a low-complexity variant to the proposed construction in which Gaussian BP is applied to the equalization factors. In this case, the factor graph of the joint probability distribution is divided into three subgraphs: (i) a MF subgraph comprised of the observation factors and channel estimation, (ii) a Gaussian BP subgraph which is applied to multi-signal detection, and (iii) a discrete BP subgraph which is applied to demodulation and decoding. Expectation propagation is used to approximate discrete distributions with a Gaussian distribution and links the discrete BP and Gaussian BP subgraphs. The result is a probabilistic receiver architecture with strong theoretical justification which can be applied to multi-signal detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (7)

Summary

We haven't generated a summary for this paper yet.