Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A double-indexed functional Hill process and applications (1604.04793v1)

Published 16 Apr 2016 in stat.ME

Abstract: Let $X_{1,n} \leq .... \leq X_{n,n}$ be the order statistics associated with a sample $X_{1}, ...., X_{n}$ whose pertaining distribution function (% \textit{df}) is $F$. We are concerned with the functional asymptotic behaviour of the sequence of stochastic processes \begin{equation} T_{n}(f,s)=\sum_{j=1}{j=k}f(j)\left(\log X_{n-j+1,n}-\log X_{n-j,n}\right){s}, \label{fme} \end{equation} indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N}% {\ast}\longmapsto \mathbb{R}_{+}$ and $s \in ]0,+\infty[$ and where $k=k(n)$ satisfies \begin{equation*} 1\leq k\leq n,k/n\rightarrow 0\text{as}n\rightarrow \infty . \end{equation*} \noindent We show that this is a stochastic process whose margins generate estimators of the extreme value index when $F$ is in the extreme domain of attraction. We focus in this paper on its finite-dimension asymptotic law and provide a class of new estimators of the extreme value index whose performances are compared to analogous ones. The results are next particularized for one explicit class $\mathcal{F}$.

Summary

We haven't generated a summary for this paper yet.