Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hörmander's solution of the $\bar\partial$ -equation with compact support (1604.04744v1)

Published 16 Apr 2016 in math.CV

Abstract: This work is a complement of the study on H\"ormander's solution of the $\bar\partial$ equation initialised by H. Hedenmalm. Let $\varphi$ be a strictly plurisubharmonic function of class C 2 in C n, let $c_\varphi(z)$ be the smallest eigenvalue of $i\partial\bar\partial\varphi$ then $\forall z\in\mathbb{C}n$, $c_\varphi (z)>0$. We denote by $L2_{p,q}(\mathbb{C}n, e\varphi)$ the $(p, q)$ currents with coefficients in $L2_{p,q}(\mathbb{C}n, e\varphi)$. We prove that if $\omega\in L2_{p,q}(\mathbb{C}n,e\varphi)$, $\bar\partial$$\omega$ = 0 for q <n then there is a solution u $\in L 2_{p,q-1}(\mathbb{C}n,c_\varphi e\varphi)$ of $\bar\partial$u = $\omega$. This is done via a theorem giving a solution with compact support if the data has compact support.

Summary

We haven't generated a summary for this paper yet.