Papers
Topics
Authors
Recent
2000 character limit reached

Local convergence analysis of Newton's method for solving strongly regular generalized equations

Published 15 Apr 2016 in math.NA and math.OC | (1604.04568v3)

Abstract: In this paper we study Newton's method for solving generalized equations in Banach spaces. We show that under strong regularity of the generalized equation, the method is locally convergent to a solution with superlinear/quadratic rate. The presented analysis is based on Banach Perturbation Lemma for generalized equation and the classical Lipschitz condition on the derivative is relaxed by using a general majorant function, which enables obtaining the optimal convergence radius, uniqueness of solution as well as unifies earlier results pertaining to Newton's method theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.