Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Learning with Contracting Observers for Data-driven Time-series Analysis (1604.04492v1)

Published 14 Apr 2016 in cs.SY and physics.data-an

Abstract: Analyzing signals arising from dynamical systems typically requires many modeling assumptions and parameter estimation. In high dimensions, this modeling is particularly difficult due to the "curse of dimensionality". In this paper, we propose a method for building an intrinsic representation of such signals in a purely data-driven manner. First, we apply a manifold learning technique, diffusion maps, to learn the intrinsic model of the latent variables of the dynamical system, solely from the measurements. Second, we use concepts and tools from control theory and build a linear contracting observer to estimate the latent variables in a sequential manner from new incoming measurements. The effectiveness of the presented framework is demonstrated by applying it to a toy problem and to a music analysis application. In these examples we show that our method reveals the intrinsic variables of the analyzed dynamical systems.

Citations (21)

Summary

We haven't generated a summary for this paper yet.