Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General solution of the Poisson equation for Quasi-Birth-and-Death processes (1604.04420v1)

Published 15 Apr 2016 in math.NA

Abstract: We consider the Poisson equation $(I-P)\boldsymbol{u}=\boldsymbol{g}$, where $P$ is the transition matrix of a Quasi-Birth-and-Death (QBD) process with infinitely many levels, $\bm g$ is a given infinite dimensional vector and $\bm u$ is the unknown. Our main result is to provide the general solution of this equation. To this purpose we use the block tridiagonal and block Toeplitz structure of the matrix $P$ to obtain a set of matrix difference equations, which are solved by constructing suitable resolvent triples.

Summary

We haven't generated a summary for this paper yet.