2000 character limit reached
Partitions with fixed largest hook length
Published 14 Apr 2016 in math.CO | (1604.04028v1)
Abstract: Motivated by a paper of Straub, we study the distribution of integer partitions according to the length of their largest hook, instead of the usual statistic, namely the size of the partitions. We refine Straub's analogue of Euler's Odd-Distinct partition theorem, derive a generalization in the spirit of Alder's conjecture, as well as a curious analogue of the first Rogers-Ramanujan identity. Moreover, we obtain a partition theorem that is the counterpart of Euler's pentagonal number theory in this setting, and connect it with the Rogers-Fine identity. We concludes with some congruence properties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.