Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Desiree - a Refinement Calculus for Requirements Engineering (1604.03184v1)

Published 12 Apr 2016 in cs.SE

Abstract: The requirements elicited from stakeholders suffer from various afflictions, including informality, incompleteness, ambiguity, vagueness, inconsistencies, and more. It is the task of requirements engineering (RE) processes to derive from these an eligible (formal, complete enough, unambiguous, consistent, measurable, satisfiable, modifiable and traceable) requirements specification that truly captures stakeholder needs. We propose Desiree, a refinement calculus for systematically transforming stakeholder require-ments into an eligible specification. The core of the calculus is a rich set of requirements operators that iteratively transform stakeholder requirements by strengthening or weakening them, thereby reducing incompleteness, removing ambiguities and vagueness, eliminating unattainability and conflicts, turning them into an eligible specification. The framework also includes an ontology for modeling and classifying requirements, a description-based language for representing requirements, as well as a systematic method for applying the concepts and operators. In addition, we define the semantics of the requirements concepts and operators, and develop a graphical modeling tool in support of the entire framework. To evaluate our proposal, we have conducted a series of empirical evaluations, including an ontology evaluation by classifying a large public requirements set, a language evaluation by rewriting the large set of requirements using our description-based syntax, a method evaluation through a realistic case study, and an evaluation of the entire framework through three controlled experiments. The results of our evaluations show that our ontology, language, and method are adequate in capturing requirements in practice, and offer strong evidence that with sufficient training, our framework indeed helps people conduct more effective requirements engineering.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Feng-Lin Li (16 papers)
  2. John Mylopoulos (11 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.