Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demystifying Fixed k-Nearest Neighbor Information Estimators (1604.03006v2)

Published 11 Apr 2016 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Estimating mutual information from i.i.d. samples drawn from an unknown joint density function is a basic statistical problem of broad interest with multitudinous applications. The most popular estimator is one proposed by Kraskov and St\"ogbauer and Grassberger (KSG) in 2004, and is nonparametric and based on the distances of each sample to its $k{\rm th}$ nearest neighboring sample, where $k$ is a fixed small integer. Despite its widespread use (part of scientific software packages), theoretical properties of this estimator have been largely unexplored. In this paper we demonstrate that the estimator is consistent and also identify an upper bound on the rate of convergence of the bias as a function of number of samples. We argue that the superior performance benefits of the KSG estimator stems from a curious "correlation boosting" effect and build on this intuition to modify the KSG estimator in novel ways to construct a superior estimator. As a byproduct of our investigations, we obtain nearly tight rates of convergence of the $\ell_2$ error of the well known fixed $k$ nearest neighbor estimator of differential entropy by Kozachenko and Leonenko.

Citations (133)

Summary

We haven't generated a summary for this paper yet.