Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality (1604.02631v1)

Published 10 Apr 2016 in math.ST, cs.IT, math.IT, math.OC, stat.ME, stat.ML, and stat.TH

Abstract: We revisit the development of grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization: The \textit{Markovian} type and the \textit{marginal} type. We propose a set of novel, relaxed sufficient conditions, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, we introduce the notion of \textit{conditional regularity of stochastic kernels}, which, to the best of our knowledge, constitutes the most relaxed condition proposed, under which asymptotic optimality of the respective grid based filters is guaranteed. Further, we extend our convergence results, including filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.

Citations (17)

Summary

We haven't generated a summary for this paper yet.