Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chordal networks of polynomial ideals (1604.02618v2)

Published 9 Apr 2016 in cs.SC, math.AC, and math.AG

Abstract: We introduce a novel representation of structured polynomial ideals, which we refer to as chordal networks. The sparsity structure of a polynomial system is often described by a graph that captures the interactions among the variables. Chordal networks provide a computationally convenient decomposition into simpler (triangular) polynomial sets, while preserving the underlying graphical structure. We show that many interesting families of polynomial ideals admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Chordal networks can be computed for arbitrary polynomial systems using a refinement of the chordal elimination algorithm from [Cifuentes-Parrilo-2016]. Furthermore, they can be effectively used to obtain several properties of the variety, such as its dimension, cardinality, and equidimensional components, as well as an efficient probabilistic test for radical ideal membership. We apply our methods to examples from algebraic statistics and vector addition systems; for these instances, algorithms based on chordal networks outperform existing techniques by orders of magnitude.

Citations (14)

Summary

We haven't generated a summary for this paper yet.