Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method (1604.02599v3)

Published 9 Apr 2016 in math.AP

Abstract: We prove the existence of a global fundamental solution $\Gamma(x;y)$ (with pole $x$) for any H\"ormander operator $\mathcal{L}=\sum_{i=1}m X_i2$ on $\mathbb{R}n$ which is $\delta$-homogeneous of degree $2$. By means of a global Lifting method for homogeneous operators proved by Folland in [On the Rothschild-Stein lifting theorem, Comm. PDEs, 1977], there exists a Carnot group $\mathbb{G}$ and a polynomial surjective map $\pi:\mathbb{G}\to \mathbb{R}n$ such that $\mathcal{L}$ is $\pi$-related to a sub-Laplacian $\mathcal{L}{\mathbb{G}}$ on $\mathbb{G}$. We show that it is always possible to perform a (global) change of variable on $\mathbb{G}$ such that the lifting map $\pi$ becomes the projection of $\mathbb{G}\equiv \mathbb{R}n\times\mathbb{R}p$ onto $\mathbb{R}n$. If $\Gamma{\mathbb{G}}(x,{x}';y,{y}')$ ($x,{x}'\in\mathbb{R}n$; $y,{y}'\in\mathbb{R}p$) is the fundamental solution of $\mathcal{L}{\mathbb{G}}$, we show that $\Gamma{\mathbb{G}}(x,0;y,{y}')$ is always integrable w.r.t. ${y}'\in \mathbb{R}p$, and its integral is a fundamental solution for $\mathcal{L}$.

Summary

We haven't generated a summary for this paper yet.