Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epi-two-dimensional flow and generalized enstrophy (1604.02339v1)

Published 8 Apr 2016 in physics.flu-dyn

Abstract: The conservation of the enstrophy ($L2$ norm of the vorticity $\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\int_{\Sigma(t)} f(\omega/\rho)\rho\, d2 x$, ($f$ an arbitrary smooth function, $\rho$ the density, and $\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\int_{M} {V}\cdot\omega\,d3x$, ($V$ the flow velocity, $\omega=\nabla\times V$, and ${M}$ the three-dimensional domain containing the fluid) is conserved. Evidently, the helicity degenerates in a 2D system, and the (generalized) enstrophy emerges as a compensating constant. This transition of the constants of motion is a reflection of an essential difference between 2D and 3D systems, because the conservation of the (generalized) enstrophy imposes stronger constraints, than the helicity, on the flow. In this paper, we make a deeper inquiry into the helicity-enstrophy interplay: the ideal fluid mechanics is cast into a Hamiltonian form in the phase space of Clebsch parameters, generalizing 2D to a wider category of epi-2D flows (2D embedded in 3D has zero helicity, while the converse is not true -- our epi-2D category encompasses a wider class of zero-helicity flows); how helicity degenerates and is substituted by a new constant is delineated; and how a further generalized enstrophy is introduced as a constant of motion applying to epi-2D flow is described.

Summary

We haven't generated a summary for this paper yet.