Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance analysis of the Kahan-enhanced scalar product on current multi- and manycore processors (1604.01890v1)

Published 7 Apr 2016 in cs.PF and cs.DC

Abstract: We investigate the performance characteristics of a numerically enhanced scalar product (dot) kernel loop that uses the Kahan algorithm to compensate for numerical errors, and describe efficient SIMD-vectorized implementations on recent multi- and manycore processors. Using low-level instruction analysis and the execution-cache-memory (ECM) performance model we pinpoint the relevant performance bottlenecks for single-core and thread-parallel execution, and predict performance and saturation behavior. We show that the Kahan-enhanced scalar product comes at almost no additional cost compared to the naive (non-Kahan) scalar product if appropriate low-level optimizations, notably SIMD vectorization and unrolling, are applied. The ECM model is extended appropriately to accommodate not only modern Intel multicore chips but also the Intel Xeon Phi "Knights Corner" coprocessor and an IBM POWER8 CPU. This allows us to discuss the impact of processor features on the performance across four modern architectures that are relevant for high performance computing.

Citations (5)

Summary

We haven't generated a summary for this paper yet.