Papers
Topics
Authors
Recent
Search
2000 character limit reached

KAM for the nonlinear beam equation

Published 6 Apr 2016 in math.AP | (1604.01657v1)

Abstract: In this paper we prove a KAM theorem for small-amplitude solutions of the non linear beam equation on the d-dimensional torus $$u_{tt}+\Delta2 u+m u + \partial_u G(x,u)=0\ ,\quad t\in { \mathbb{R}} , \; x\in \ { \mathbb{T}}d, \qquad \qquad () $$ where $G(x,u)=u4+ O(u5)$. Namely, we show that, for generic $m$, many of the small amplitude invariant finite dimensional tori of the linear equation $()_{G=0}$, written as the system $$ u_t=-v,\quad v_t=\Delta2 u+mu, $$ persist as invariant tori of the nonlinear equation $()$, re-written similarly. The persisted tori are filled in with time-quasiperiodic solutions of $()$. If $d\ge2$, then not all the persisted tori are linearly stable, and we construct explicit examples of partially hyperbolic invariant tori. The unstable invariant tori, situated in the vicinity of the origin, create around them some local instabilities, in agreement with the popular belief in the nonlinear physics that small-amplitude solutions of space-multidimensional Hamiltonian PDEs behave in a chaotic way.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.