Summability of multilinear forms on classical sequence spaces (1604.01610v1)
Abstract: We present an extension of the Hardy--Littlewood inequality for multilinear forms. More precisely, let $\mathbb{K}$ be the real or complex scalar field and $m,k$ be positive integers with $m\geq k\,$ and $n_{1},\dots ,n_{k}$ be positive integers such that $n_{1}+\cdots +n_{k}=m$. ($a$) If $(r,p)\in (0,\infty )\times \lbrack 2m,\infty ]$ then there is a constant $D_{m,r,p,k}{\mathbb{K}}\geq 1$ (not depending on $n$) such that $$ \left( \sum_{i_{1},\dots ,i_{k}=1}{n}\left| T\left( e_{i_{1}}{n_{1}},\dots ,e_{i_{k}}{n_{k}}\right) \right| {r}\right) {% \frac{1}{r}}\leq D_{m,r,p,k}{\mathbb{K}} \cdot n{max\left{ \frac{% 2kp-kpr-pr+2rm}{2pr},0\right} }\left| T\right| $$ for all $m$-linear forms $T:\ell_{p}{n}\times \cdots \times \ell_{p}{n}\rightarrow \mathbb{K}$ and all positive integers $n$. Moreover, the exponent $max\left{ \frac{2kp-kpr-pr+2rm}{2pr},0\right} $ is optimal. ($b$) If $(r, p) \in (0, \infty) \times (m, 2m]$ then there is a constant $% D_{m,r,p, k}{\mathbb{K}}\geq 1$ (not depending on $n$) such that $$ \left( \sum_{i_{1},\dots ,i_{k}=1}{n }\left| T\left( e_{i_{1}}{n_{1}},\dots ,e_{i_{k}}{n_{k}}\right) \right| {r }\right) {% \frac{1}{r }}\leq D_{m,r,p, k}{\mathbb{K}} \cdot n{ max \left{\frac{% p-rp+rm}{pr}, 0\right}}\left| T\right| $$ for all $m$-linear forms $T:\ell_{p}{n}\times \cdots \times \ell_{p}{n}\rightarrow \mathbb{K}$ and all positive integers $n$. Moreover, the exponent $max \left{\frac{p-rp+rm}{pr}, 0\right}$ is optimal. The case $k=m$ recovers a recent result due to G. Araujo and D. Pellegrino.