Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The topological property of the irregular sets on the lengths of basic intervals in beta-expansions (1604.01470v5)

Published 6 Apr 2016 in math.DS

Abstract: Let $\beta > 1$ be a real number and $(\epsilon_1(x, \beta), \epsilon_2(x, \beta), \ldots)$ be the $\beta$-expansion of a point $x \in (0, 1]$. For all $x \in (0,1]$, let $A(D(x))$ be the set of accumulation points of $\frac{-\log_\beta |I_n(x)|}{n}$ as $n \rightarrow \infty$, where $|I_n(x)|$ is the length of the basic interval of order $n$ containing $x \in (0, 1]$. In this paper, we prove that $A(D(x))$ is always a closed interval for any $x \in (0,1]$. Furthermore, if $\lambda(\beta)>0$, the extremely irregular set containing points $x \in [0, 1]$ whose upper limit of $\frac{-\log_\beta |I_n(x)|}{n}$ equals to $1+\l(\beta)$ is residual, where $1+\l(\beta)$ is a constant depending on $\beta$. As a consequence, the irregular set with $x\in [0, 1]$ whose limit of $\frac{-\log_\beta |I_n(x)|}{n}$ does not exist is residual for every $\lambda(\beta)>0$.

Summary

We haven't generated a summary for this paper yet.