Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some reversed and refined Callebaut inequalities via Kontorovich constant (1604.00996v1)

Published 4 Apr 2016 in math.FA

Abstract: In this paper we employ some operator techniques to establish some refinements and reverses of the Callebaut inequality involving the geometric mean and Hadamard product under some mild conditions. In particular, we show \begin{align*} K&\left(\frac{M{2t-1}}{m{2t-1}},2\right){r'} \sum_{j=1}n(A_j\sharp_{s}B_j)\circ \sum_{j=1}n(A_j\sharp_{1-s}B_j) \nonumber\&\,\,+\left(\frac{t-s}{t-1/2}\right)\left(\sum_{j=1}n(A_j\sharp_{t}B_j)\circ \sum_{j=1}n(A_j\sharp_{1-t}B_j) -\sum_{j=1}n(A_j\sharp B_j)\circ \sum_{j=1}n(A_j\sharp B_j)\right)\nonumber \&\leq \sum_{j=1}n(A_j\sharp_{t}B_j)\circ \sum_{j=1}n(A_j\sharp_{1-t} B_j)\,, \end{align*} where $A_j, B_j\in{\mathbb B}({\mathscr H})\,\,(1\leq j\leq n)$ are positive operators such that $0<m' \leq B_j\leq m <M \leq A_j\leq M'\,\,(1\leq j\leq n)$, either $1\geq t\geq s>{\frac{1}{2}}$ or $0\leq t\leq s<\frac{1}{2}$, $r'=\min\left{\frac{t-s}{t-1/2},\frac{s-1/2}{t-1/2}\right}$ and $K(t,2)=\frac{(t+1)2}{4t}\,\,(t>0)$.

Summary

We haven't generated a summary for this paper yet.