Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leading order response of statistical averages of a dynamical system to small stochastic perturbations (1604.00931v3)

Published 23 Mar 2016 in nlin.CD

Abstract: The classical fluctuation-dissipation theorem predicts the average response of a dynamical system to an external deterministic perturbation via time-lagged statistical correlation functions of the corresponding unperturbed system. In this work we develop a fluctuation-response theory and test a computational framework for the leading order response of statistical averages of a deterministic or stochastic dynamical system to an external stochastic perturbation. In the case of a stochastic unperturbed dynamical system, we compute the leading order fluctuation-response formulas for two different cases: when the existing stochastic term is perturbed, and when a new, statistically independent, stochastic perturbation is introduced. We numerically investigate the effectiveness of the new response formulas for an appropriately rescaled Lorenz 96 system, in both the deterministic and stochastic unperturbed dynamical regimes.

Summary

We haven't generated a summary for this paper yet.