Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic Theory of Rerandomization in Treatment-Control Experiments (1604.00698v4)

Published 3 Apr 2016 in math.ST, stat.AP, and stat.TH

Abstract: Although complete randomization ensures covariate balance on average, the chance for observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. To supplement existing results, we develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and a truncated Gaussian random variable. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We also demonstrate that, compared to complete randomization, rerandomization reduces the asymptotic sampling variances and quantile ranges of the difference-in-means estimator. Moreover, our work allows the construction of accurate large-sample confidence intervals for the average causal effect, thereby revealing further advantages of rerandomization over complete randomization.

Summary

We haven't generated a summary for this paper yet.