Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of equilibrium shapes in some free boundary problems involving fluids (1604.00571v2)

Published 2 Apr 2016 in math.AP

Abstract: In this paper the motion of two-phase, incompressible, viscous fluids with surface tension is investigated. Three cases are considered: (1) the case of heat-conducting fluids, (2) the case of isothermal fluids, and (3) the case of Stokes flows. In all three situations, the equilibrium states in the absence of outer forces are characterized and their stability properties are analyzed. It is shown that the equilibrium states correspond to the critical points of a natural physical or geometric functional (entropy, available energy, surface area) constrained by the pertinent conserved quantities (total energy, phase volumes). Moreover, it is shown that solutions which do not develop singularities exist globally and converge to an equilibrium state.

Summary

We haven't generated a summary for this paper yet.