Papers
Topics
Authors
Recent
2000 character limit reached

An introduction to the study of critical points of solutions of elliptic and parabolic equations

Published 2 Apr 2016 in math.AP | (1604.00530v2)

Abstract: We give a survey at an introductory level of old and recent results in the study of critical points of solutions of elliptic and parabolic partial differential equations. To keep the presentation simple, we mainly consider four exemplary boundary value problems: the Dirichlet problem for the Laplace's equation; the torsional creep problem; the case of Dirichlet eigenfunctions for the Laplace's equation; the initial-boundary value problem for the heat equation. We shall mostly address three issues: the estimation of the local size of the critical set; the dependence of the number of critical points on the boundary values and the geometry of the domain; the location of critical points in the domain.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.