Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the distribution of positive and negative values of Hardy's $Z$-function (1604.00517v1)

Published 2 Apr 2016 in math.NT

Abstract: We investigate the distribution of positive and negative values of Hardy's function $$ Z(t) := \zeta(1/2+it){\chi(1/2+it)}{-1/2}, \quad \zeta(s) = \chi(s)\zeta(1-s). $$ In particular we prove that $$ \mu\bigl(I_{+}(T,T)\bigr) \;\gg T\; \qquad \hbox{and}\qquad \mu\bigl(I_{-}(T, T)\bigr) \; \gg \; T, $$ where $\mu(\cdot)$ denotes the Lebesgue measure and \begin{align*} { I}+(T,H) &\;=\; \bigl{T< t\le T+H\,:\, Z(t)>0\bigr}, { I}-(T,H) &\;=\; \bigl{T< t\le T+H\,:\, Z(t)<0\bigr}. \end{align*}

Summary

We haven't generated a summary for this paper yet.