2000 character limit reached
On the distribution of positive and negative values of Hardy's $Z$-function
Published 2 Apr 2016 in math.NT | (1604.00517v1)
Abstract: We investigate the distribution of positive and negative values of Hardy's function $$ Z(t) := \zeta(1/2+it){\chi(1/2+it)}{-1/2}, \quad \zeta(s) = \chi(s)\zeta(1-s). $$ In particular we prove that $$ \mu\bigl(I_{+}(T,T)\bigr) \;\gg T\; \qquad \hbox{and}\qquad \mu\bigl(I_{-}(T, T)\bigr) \; \gg \; T, $$ where $\mu(\cdot)$ denotes the Lebesgue measure and \begin{align*} { I}+(T,H) &\;=\; \bigl{T< t\le T+H\,:\, Z(t)>0\bigr}, { I}-(T,H) &\;=\; \bigl{T< t\le T+H\,:\, Z(t)<0\bigr}. \end{align*}
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.