Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-symmetric perturbations of self-adjoint operators (1604.00293v1)

Published 1 Apr 2016 in math.SP

Abstract: We investigate the effect of non-symmetric relatively bounded perturbations on the spectrum of self-adjoint operators. In particular, we establish stability theorems for one or infinitely many spectral gaps along with corresponding resolvent estimates. These results extend, and improve, classical perturbation results by Kato and by Gohberg/Krein. Further, we study essential spectral gaps and perturbations exhibiting additional structure with respect to the unperturbed operator; in the latter case, we can even allow for perturbations with relative bound $\ge 1$. The generality of our results is illustrated by several applications, massive and massless Dirac operators, point-coupled periodic systems, and two-channel Hamiltonians with dissipation.

Summary

We haven't generated a summary for this paper yet.