Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Compositional Approach to Language Modeling (1604.00100v1)

Published 1 Apr 2016 in cs.CL

Abstract: Traditional LLMs treat language as a finite state automaton on a probability space over words. This is a very strong assumption when modeling something inherently complex such as language. In this paper, we challenge this by showing how the linear chain assumption inherent in previous work can be translated into a sequential composition tree. We then propose a new model that marginalizes over all possible composition trees thereby removing any underlying structural assumptions. As the partition function of this new model is intractable, we use a recently proposed sentence level evaluation metric Contrastive Entropy to evaluate our model. Given this new evaluation metric, we report more than 100% improvement across distortion levels over current state of the art recurrent neural network based LLMs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.