Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams (1603.09744v1)

Published 31 Mar 2016 in math.CO and math.AG

Abstract: We introduce two new bases for polynomials that lift monomial and fundamental quasisymmetric functions to the full polynomial ring. By defining a new condition on pipe dreams, called quasi-Yamanouchi, we give a positive combinatorial rule for expanding Schubert polynomials into these new bases that parallels the expansion of Schur functions into fundamental quasisymmetric functions. As a result, we obtain a refinement of the stable limits of Schubert polynomials to Stanley symmetric functions. We also give combinatorial rules for the positive structure constants of these bases that generalize the quasi-shuffle product and shuffle product, respectively. We use this to give a Littlewood--Richardson rule for expanding a product of Schubert polynomials into fundamental slide polynomials and to give formulas for products of Stanley symmetric functions in terms of Schubert structure constants.

Summary

We haven't generated a summary for this paper yet.