Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weak colored local rules for planar tilings

Published 31 Mar 2016 in math.DS and cs.DM | (1603.09485v3)

Abstract: A linear subspace $E$ of $\mathbb{R}n$ has colored local rules if there exists a finite set of decorated tiles whose tilings are digitizations of $E$. The local rules are weak if the digitizations can slightly wander around $E$. We prove that a linear subspace has weak colored local rules if and only if it is computable. This goes beyond the previous results, all based on algebraic subspaces. We prove an analogous characterization for sets of linear subspaces, including the set of all the linear subspaces of $\mathbb{R}n$.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.