Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding Arguments (1603.08777v2)

Published 29 Mar 2016 in cs.IT, cs.DS, math.IT, and math.PR

Abstract: Many proofs in discrete mathematics and theoretical computer science are based on the probabilistic method. To prove the existence of a good object, we pick a random object and show that it is bad with low probability. This method is effective, but the underlying probabilistic machinery can be daunting. "Encoding arguments" provide an alternative presentation in which probabilistic reasoning is encapsulated in a "uniform encoding lemma". This lemma provides an upper bound on the probability of an event using the fact that a uniformly random choice from a set of size $n$ cannot be encoded with fewer than $\log_2 n$ bits on average. With the lemma, the argument reduces to devising an encoding where bad objects have short codewords. In this expository article, we describe the basic method and provide a simple tutorial on how to use it. After that, we survey many applications to classic problems from discrete mathematics and computer science. We also give a generalization for the case of non-uniform distributions, as well as a rigorous justification for the use of non-integer codeword lengths in encoding arguments. These latter two results allow encoding arguments to be applied more widely and to produce tighter results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.