Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On hard quadrature problems for marginal distributions of SDEs with bounded smooth coefficients (1603.08686v1)

Published 29 Mar 2016 in math.NA and math.PR

Abstract: In recent work of Hairer, Hutzenthaler and Jentzen, see [9], a stochastic differential equation (SDE) with infinitely often differentiable and bounded coefficients was constructed such that the Monte Carlo Euler method for approximation of the expected value of the first component of the solution at the final time converges but fails to achieve a mean square error of a polynomial rate. In the present paper we show that this type of bad performance for quadrature of SDEs with infinitely often differentiable and bounded coefficients is not a shortcoming of the Euler scheme in particular but can be observed in a worst case sense for every approximation method that is based on finitely many function values of the coefficients of the SDE. Even worse we show that for any sequence of Monte Carlo methods based on finitely many sequential evaluations of the coefficients and all their partial derivatives and for every arbitrarily slow convergence speed there exists a sequence of SDEs with infinitely often differentiable and bounded by one coefficients such that the first order derivatives of all diffusion coefficients are bounded by one as well and the first order derivatives of all drift coefficients are uniformly dominated by a single real-valued function and such that the corresponding sequence of mean absolute errors for approximation of the expected value of the first component of the solution at the final time can not converge to zero faster than the given speed.

Summary

We haven't generated a summary for this paper yet.